ENGLISH
(Common for all branches)

IT 111
Credits:3
Instruction : 3 Periods & 1 Tut/Week
Sessional Marks :40
End .Exam :3 Hours
End-Exam-Marks:60

Course Objectives:

➢ To improve the language proficiency of the students in English with emphasis on Reading and Writing skills.
➢ To enable the students to study engineering subjects with greater comprehension & cognizance.
➢ To strengthen the vocabulary of the students.
➢ To equip the students with the knowledge of different formats of business communication.

Course Outcomes:

By the end of the course, the student will be able to:

1. Analyze the structure of the phrases, clauses and sentences
2. Apply his enriched vocabulary to give better shape to his communication skills.
3. Effectively use different formats of business correspondence.
4. Use idiomatic expressions and foreign phrases in his communication.
5. Use correct structures to write sentences.

SYLLABUS

UNIT I

10 Periods

Vocabulary: One Word Substitutes
Grammar: Noun : Noun Phrase, Gerunds
Writing Skills: 1) Formal Letter writing – format, style of letter writing and types of letters --- complaint, enquiry, requesting quotations, invitation, regret and acceptance.
2) Story Building-Developing a story from the key words, giving a title and describing learning outcomes.

UNIT II

10 Periods

Vocabulary: Foreign phrases or expressions
Grammar: Adjectives : Quantifiers, qualifiers, determiners, nouns as adjectives, verbs as adjectives, adjective phrases
2. Essay writing.
UNIT III
10 Periods

Vocabulary: Idiomatic expressions- meaning and usage.
Grammar: Articles (concept and function; definite, indefinite and omission of articles)

Writing Skills:
1. Preparation of C.V. and Resume-format, style purpose and objective.
2. Précis- writing technique with suitable title.

UNIT IV
9 Periods

Vocabulary: Phrasal Verbs derived from the following dynamic verbs: Go, Get, Run, Take, Look, Put, Hold, Stand etc.
Grammar: Prepositions or prepositional phrases
Writing Skills:
1. Reading comprehension – questions based on facts, interpretation, logical deduction, vocabulary.
2. E-mail etiquette- format, style and language.

UNIT V
9 Periods

Vocabulary: Synonyms and Antonyms (From the prescribed text only)
Grammar: Pronouns: Kinds of pronouns, relative pronouns – who and whom, whose, which
Verbs - Aspects, moods, tenses, direct and indirect speech (active and passive voice), concord, Infinites and verb participles, verb phrase, Conditionals – probable, improbable, impossible, If-clause, Correction of sentences

TEXT BOOK:

Life through language
Pearson Publication Delhi

REFERENCE BOOKS:

1. GJ.K. Gangal *Practical Course for Developing Writing Skill in English* PHI
3. S.M.Gupta *Current English Grammar And Usage* PHI
5. AbulHashem *Common errors in English* Ramesh Publishing House
7. Edgar Thorpe &Showick Thorpe *Objective English* Pearson
ENGINEERING MATHEMATICS-I
(Common for all branches)

IT 112
Credits: 3
Instruction: 3 Periods & 1 Tut/Week
End Exam: 3 Hours
Sessional Marks: 40
End-Exam-Marks: 60

Course Objective:

➢ To impart knowledge in basic concepts of functions of several variables and their applications like maxima & minima.
➢ To enable the students to study the concepts of Fourier series.
➢ To enable the students to study the concepts of three dimensional figures like sphere, cone, cylinder and conicoids.
➢ To equip the students with the knowledge of multiple integrals and their applications.
➢ To introduce the concepts of improper integrals like beta, gamma & error functions.

Course Outcomes:

By the end of the course, student will be able to:
1. Familiarize with functions of several variables
2. Apply Fourier series in solving boundary value problems
3. Apply the concept of three dimensional analytical geometry
4. Use mathematical tools needed in evaluating multiple integral and their usage.
5. Use the concepts of improper integrals, Gamma, Beta and Error functions which are needed in Engineering applications

SYLLABUS

UNIT I

Partial Differentiation: 12 Periods
Function of two or more variables – Partial Derivatives – which variable is to be treated as constant – Homogeneous functions – Euler’s theorem – Total Derivative - Change of Variables .Jacobians – Taylor’s theorem for functions of two variables – Maxima and Minima functions of two variables.

UNIT II

Fourier series: 12 Periods
UNIT III
12 Periods

UNIT IV
14 Periods

UNIT V
10 Periods

Beta & Gamma functions : Beta function – Gamma function relation between Beta and Gamma functions – results and problems, error function.

TEXT BOOK:

REFERENCE BOOKS:

ENGINEERING CHEMISTRY
(Common for all branches)

IT 113 Credits:3
Instruction : 3 Periods & 1 Tut/Week Sessional Marks :40
End .Exam :3 Hours End-Exam-Marks:60

Course Objectives:

- To provide knowledge on problems associated with impure water and various water treatment technologies
- To enable the students to know the importance of semiconducting materials and preparation techniques
- To provide basic knowledge on conventional energy resources, developments in batteries and fuel cells
- To understand the corrosion of metals, various methods to prevent and control of corrosion
- To create awareness on advanced concepts like nano materials, green chemistry and eco-friendly technologies for future development

Course Outcomes:

By end of the course, student will be able to:

1. Adopt suitable technologies for domestic and industrial water
2. Identify & generalize the properties of semi conducting materials used in various
3. Design suitable batteries for different applications.
4. Select and design of suitable material to prevent corrosion and protecting metals from corrosion.
5. Develop green technologies for industrial processes.
6. solve scientific problems related to various engineering works

SYLLABUS

UNIT I 10 Periods

Water Chemistry: Impurities in water, Hardness of water - units and calcium carbonate equivalents, -estimation of hardness (EDTA method) - disadvantages of hard water, boiler troubles- Scale & Sludge formation - prevention- Internal treatment - (Phosphate, Carbonate and Calgon conditioning) -Caustic embrittlement

UNIT II 10 Periods

Ceramic Materials: Cement-Manufacture of Portland cement - Setting and hardening of cement -Cement concrete - RCC, Refractories - Classification - properties, Ceramics and its Engineering applications.

UNIT III

Thermal Energy: Fuel –types of fuels -Calorific value and its determination (Bomb calorimeter method) Coal- Ranking of coal - analysis (proximate and ultimate) – COKE – Manufacture (Otto Hoffmann’s process). Petroleum – refining of Crude oil; Synthetic petrol – Fischer - Tropsch and Bergius methods, Knocking in Petrol and Diesel engine – Octane number - Cetane number, LPG and CNG.

Chemical Energy: Electrode potential, electro chemical series – Reference electrodes – SHE, Calomel electrode – Galvanic cells – primary cells (Dry cell) secondary cells (Lead acid, Ni-Cd, Li ion batteries) H₂-O₂-fuel cells.

Solar Energy: Construction and Working of Photovoltaic cell

UNIT IV

Corrosion Chemistry: Origin and theories of corrosion – Types of corrosion -Galvanic corrosion, concentration cell corrosion, pitting corrosion, stress corrosion, inter granular corrosion; Factors affecting corrosion – Corrosion

Prevention & Control of Corrosion:Cathodic protection; Corrosion inhibitors; Protective coatings –Galvanization & Tinning –Anodized coatings - paints & special paints

UNIT V

Nanochemistry: Introduction, growth of nanoparticles (Sol-gel process), Fullerenes and Carbon nanotubes

Green chemistry: Principles of Green chemistry, Alternative Solvents used in green synthesis.

Lubricants: Concept of Tribology -MEChanism of lubrication- Blended oils - properties of lubricating oils -Viscosity Index -Fire & Flash Point -Cloud &Pour Point-Aniline point.

High Polymers &Composites: Basic concepts of Polymers, Effect of polymer structure on properties. Plastics-Thermoplastic and Thermosetting resins, Composites -types- Fiber Reinforced Plastics -Particulate composites -Layer composites, engineering applications of composites.

TEXT BOOK:

REFERENCE BOOKS:
5. V.K. Ahluvalia*Green solvents for organic synthesis*Narosa publications.
PROFESSIONAL ETHICS AND HUMAN VALUES
(Common for All Branches)

IT114
Instruction: 3 Periods & 1 Tut/Week

Credits : 3
Sessional Marks : 100

Course Objective:
➢ To understand moral values and their significance.
➢ To draw inspiration for imbibing moral values
➢ To understand professional ethics and obligations
➢ To know the code of ethics of relevant Professional societies

Course Outcomes:

By end of the course, student will be able to:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Understand the right code of conduct.</td>
</tr>
<tr>
<td>2.</td>
<td>Assess his/her roles as a proactive member of the society</td>
</tr>
<tr>
<td>3.</td>
<td>Solve moral dilemmas and issues</td>
</tr>
<tr>
<td>4.</td>
<td>Implement Code of ethics of relevant Professional societies</td>
</tr>
</tbody>
</table>

SYLLABUS

UNIT I Introduction
Philosophical basis for human values- Human values as enshrined in the Gita, Bible and khoran; Religion- Values propounded in various religions- Need for Religious harmony

UNIT II: Human Values: Inspiration
Inspiration for human values- Mahatma Gandhi, Dr.SarvepalliRadha Krishnan, Swami Vivekananda, Rabindranath Tagore, Mother Theresa- Benefits of Human values- Harmony between Self-interest and human values

UNIT III: Basics of Professional Ethics
Ethical Human Conduct – based on acceptance of basic human values; Humanistic Constitution and Endersal human order – skills, sincerity and fidelity; Scope and characteristics of people-frily and eco-frily production system, Technologies and management systems.

UNIT IV: Professional Ethics in practice
Profession and Professionalism – Professional Accountability, Roles of a professional, Ethics and image of profession; Engineering Profession and Ethics - Technology and society, Ethical obligations of Engineering professionals, Roles of Engineers in industry, society, nation and the world; Professional Responsibilities – Collegiality, Loyalty, Confidentiality, Conflict of Interest, Whistle Blowing

UNIT V: Indian Constitution, Code of Ethics and Global Issues
Indian Constitution: Fundamental Rights and duties, Freedom, Equality, Fraternity, Justice, Directive principles of state policy. Sample code of Ethics by Professional Societies such as ASME, ASCE, IMEC, IETE, Institution of Engineers (India), Indian Institute of Materials Management etc.
Multinational corporations - Environmental ethics - computer ethics - weapons development - engineers as managers-consulting engineers-engineers as expert witnesses and advisors - moral leadership.

TEXT BOOKS:

REFERENCE BOOKS:

2. A.N. Tripathy Human values 2003, New Age International Publishers
BASIC ELECTRONICS ENGINEERING
(for IT, CSE & ECE branches)

IT115
Credits: 3
Instruction : 3 Periods & 1 Tut/Week
End Exam : 3 Hours
Sessional Marks : 40
End-Exam-Marks: 60

Course Objectives:

- To familiarize the students about different discrete electronic components and CRO.
- To familiarize the students with the analysis and design of Rectifier Circuits.
- To train the students with the operational principle, analysis, design and applications of different types of Diodes.
- To train the students the operational principle, analysis, design and application of different field effect transistors (FET) and circuits using FETs & bipolar junction transistor (BJT).
- To familiarize the students about Analog ICs.

Course Outcomes:

<table>
<thead>
<tr>
<th>By the end of the course, the student will be able to:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Analyze different types of diodes, operation and its characteristics.</td>
</tr>
<tr>
<td>2. Design different types of voltage rectifiers.</td>
</tr>
<tr>
<td>3. Design and analyze the DC bias circuitry of BJT and FET and set up required bias point</td>
</tr>
<tr>
<td>4. Design simple electronic circuits to accomplish a specific function, e.g. DC power supplies, Electronic switches etc.</td>
</tr>
</tbody>
</table>

SYLLABUS

UNIT I: Electronic Components

Capacitors: Capacitance, charging and discharging, Typical capacitors, Capacitor Coding, Parallel capacitances, Series capacitances, Energy stored in Electrostatic Field of Capacitance, Measuring and Testing of Capacitors.

Inductors: Self and Mutual Inductance

Semiconductors: Mass Action Law, Mobility, Conductivity, Drift current and Diffusion current, Hall-Effect

UNIT II: Electronic Instruments

Types of wire conductors, Connectors, Printed wiring, Switches, Fuses, Wire resistance, Introduction to batteries, Introduction to CRO, CRT, Soldering Materials, Soldering Tools.

Dept. of Information Technology, ANITS (A)
UNIT III: Diodes and Applications 8 periods
Semiconductor Materials, The PN Junction Diode, Volt-Amp characteristic curve, Diode approximations, Diode ratings, Rectifier Circuits, Special Diodes.

UNIT IV: Transistors 10 periods
Transistor Construction, Transistor Operating region, Transistor Ratings, Transistor Biasing Techniques, Small signal amplify operation, CB,CC,CE configurations, JFET and their Characteristics, Biasing techniques for JFET, MOSFET and their Characteristics, MOSFET Biasing techniques.

UNIT V: Integrated Circuits 14 periods
Advantages of ICs over discrete components, Introduction to Op-amp, Differential Amplifiers, Block diagram and Characteristics of Op-Amp, Inverting and Non inverting modes, Virtual ground, CMRR, Slew rate, IC 555 Timer, Block diagram, Modes of operation of IC55, OP-AMP voltage Regulators, Fixed Voltage Regulators (78/79, XX).

TEXT BOOKS:

2. RamaKant A GayakwadOp-Amps and Linear Integrated Circuits PHI Fourth Edition- (Unit V)

REFERENCE BOOKS:

ENGINEERING CHEMISTRY LAB
(Common for all branches)

IT 116 Credits: 2
Practical / week : 3 Sessional Marks :50
End-Exam:3Hrs End-Exam. Marks :50

Course Objectives:
- To provide clear idea over quantitative chemical analysis.
- To improve skills in analyzing samples through titration procedures.
- To familiarize with Instrumental methods of analysis for more accuracy.
- To introduce various methods of analyzing the ore samples.

Course Outcomes:
1.	Able to identify the suitable method for analyzing samples.
2.	Able to analyze different types of water samples to test quality parameters.
3.	Able to use different types of instruments in estimating the composition of materials in samples related to Soil, Water.

List of Experiments (any 10 experiments are to be completed):
1. Preparation of standard solution
2. Estimation of sodium carbonate present in soda ash.
3. Estimation of amount of calcium present in the Portland cement by titrimetrically.
4. Estimation of amount of Copper present in the Copper ore by Iodometrically.
5. Determination of total Hardness present in the given water sample.
6. Estimation of amount of Zinc by titrating with EDTA.
7. Determine the strength of acid by titrating with strong base using pH meter.
8. Estimate the individual strength of acids present in the acid mixture by titrating with strong base using conductivity meter.
9. Estimate the amount of Mohr's salt present in the given solution by titrating with potassium dichromate using potentiometer.
10. Determination of viscosity of the given liquid by Ostwald viscometer.
11. Determination of rate constant of acid catalyzed hydrolysis of ester.
12. Determination of partition coefficient of iodine distributed between Water and Carbon tetra chloride.

Demonstration
13. Estimation of amount of dissolved oxygen (D.O) present in the given water sample.
14. Synthesize the Phenol-Formaldehyde resin.

TEXT BOOKS:

REFERENCE BOOKS:
PROGRAMMING WITH C LAB
(Common for all branches)

IT 117
Credits:3
Practicals/week: 3 Periods & 1 Tut/Week
End-Exam: 3Hrs
Sessional Marks: 50
End-Exam, Marks: 50

Course objective:
To enable students to
➢ Understand the program development steps using compilers.
➢ Strengthen the problem solving skills using programming techniques.
➢ Design programs using various control structures.
➢ Develop programs using structures, unions and files.

Course outcomes:
By the end of the course, student will be able to:

1. Gain a working knowledge on programming.
2. Learn and use the fundamentals of a programming language (such as language-defined data types (int, float, char, double), control constructs (sequence, selection, repetition), program modules (including functions, modules, methods)).
3. Exhibit the ability to formulate a program that correctly implements the algorithm.
4. Demonstrate the effective use the programming environment used in the course.

SYLLABUS:
1. Overview
2. Introduction to Unix
3. Data Types, Constants
4. Operators, Expressions
5. Control Structures
6. Arrays & Strings
7. Pointers
8. Functions.
9. Structures & Unions
10. Files

REFERENCE BOOKS:
5. B.W. Kernighan, Dennis M. Ritchie The C – Programming Language PHI

Dept. of Information Technology, ANITS (A)
LIST OF SAMPLE PROGRAMS

1. Write a C program for any three of the following
 i) To accept the distance between two cities and convert the distance in meters, feet, inches and centimeters. (Note: Input distance in Kilometers).
 ii) To accept the marks obtained by a student in five different subjects, calculate the total marks and percentage obtained by the student (The maximum marks for each subject is 100).
 iii) To accept a 3-digit number and calculate the sum of its digits.
 iv) To accept quantity, product code, unit price of five products and calculate the total price for each product and the SUBTOTAL, TAX, TOTAL and print the details in the following format

<table>
<thead>
<tr>
<th>Qty</th>
<th>Product code</th>
<th>Unit price</th>
<th>Total price</th>
</tr>
</thead>
<tbody>
<tr>
<td>xx</td>
<td>1</td>
<td>400.00</td>
<td>xxxx.xx</td>
</tr>
<tr>
<td>xx</td>
<td>2</td>
<td>20.00</td>
<td>xxxx.xx</td>
</tr>
<tr>
<td>xx</td>
<td>3</td>
<td>200.00</td>
<td>xxxx.xx</td>
</tr>
<tr>
<td>xx</td>
<td>4</td>
<td>100.00</td>
<td>xxxx.xx</td>
</tr>
<tr>
<td>xx</td>
<td>5</td>
<td>200.00</td>
<td>xxxx.xx</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SUB TOTAL</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>xxxx.xx</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>TAX</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>xxxx.xx</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>TOTAL</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>xxxx.xx</td>
</tr>
</tbody>
</table>

v) To evaluate the following expression
 a) \(\frac{ax + by}{ax - by} \)
 b) \(a^2 + b^2 + \sqrt{2ab} \)

2. Write a C program for any three of the following
 i) To find the maximum and minimum of three numbers.
 ii) For the above experiment in 1-ii) find and display the grade of the student as prescribed below:

<table>
<thead>
<tr>
<th>Percentage</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>>90</td>
<td>A</td>
</tr>
<tr>
<td>>80 and <=90</td>
<td>B</td>
</tr>
<tr>
<td>>70 and <=80</td>
<td>C</td>
</tr>
<tr>
<td>>60 and <=70</td>
<td>D</td>
</tr>
<tr>
<td>>=50 and <=60</td>
<td>E</td>
</tr>
<tr>
<td>< 50</td>
<td>F</td>
</tr>
</tbody>
</table>

iii) To find the roots of a quadratic equation.
iv) To find the area of a triangle when
 a) Sides are given
 b) Base and height are given
3. Write a C program for any four of the following
 i) To print prime numbers between the specified range (eg. 100 to 200)
 ii) To generate Pascal triangle format
 iii) To compute cosine series: \(\cos(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \ldots \)
 iv) To check whether number is palindrome or not.
 v) To print set of Armstrong numbers in a specified range. (eg. 100 to 200)
 vi) To convert the numbers from the following
 a) Binary to decimal
 b) Decimal to binary
4. Write a C program to perform the following operations in a given array of 'n' numbers
 i) Sum of all the numbers
 ii) Minimum and maximum in the array
 iii) Searching an element
 iv) To generate random real numbers in the range of 10 to 20 and sort them.
5. Write a C Program to perform the following on the matrices
 i) Transpose of a matrix and check the symmetry
 ii) Trace and norm of a matrix
 iii) Addition of matrices
 iv) Multiplication of two matrices
6. Write a C program to perform any two of the following operations on strings (not using library functions)
 i) To check whether the given string is palindrome or not.
 ii) To find the length of the string
 iii) To concatenate two strings.
 iv) To check whether the given substring exists in a text and display the frequency.
7. Write a C program to create a structure for a student with the details name, roll no, five subject marks, total marks, percentage and sort the records according to the percentage.
 ii) Write a C program to add two complex numbers using structures.
 iii) Write a C program to illustrate difference between union and structure.
8. Write a program to calculate the sum of an array using pointers.
 ii) Write a program to search a name in a given list of names using pointers
9. Write a C program using functions
 i) To illustrate call by value and call by reference
 ii) To accept a string and character and pass them as parameters to a function, the function shall replace the character in the string with any other specific character and return the modified string.
iii) To pass the employee record as a structure to the function. The function shall compute the gross salary (include DA and HRA Calculation), take the savings as input and compute the tax payable as per the prescribed table.

<table>
<thead>
<tr>
<th>Gross Salary</th>
<th>Tax (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Less than 2 Lakhs</td>
<td>NIL</td>
</tr>
<tr>
<td>2 Lakhs to 5 Lakhs</td>
<td>10</td>
</tr>
<tr>
<td>5 Lakh to 10 Lakh</td>
<td>20</td>
</tr>
<tr>
<td>10 Lakh to 50 Lakhs</td>
<td>30</td>
</tr>
<tr>
<td>Above 50 lakhs</td>
<td>50</td>
</tr>
</tbody>
</table>

Note: The employee record shall contain employee name, employee id, hire date, basic salary, DA, HRA.

10. Write a C program for any one program for the following to illustrate recursion
 i) Factorial of a number
 ii) GCD and LCM of two numbers
 iii) Fibonacci series

11. Write a C program to perform any three of the following on files
 i) To count the number of alphabets, numbers, words, lines in a given file.
 ii) To merge two files into third auxiliary file and display the content.
 iii) To print every even position character in a given file.
 iv) To separate alphabets and integers into two files from the given source file.

12. Write a C program to update the record of a person in a file by accepting person ID.
 Hint:
 1. Create the file with few records.
 2. The fields in a record
 a. Name of the person
 b. Identity(ID) of the person
 c. Age
 d. Gender
 e. Occupation
 f. Salary
ENGINEERING MATHEMATICS-II
(Common for all branches)

IT121
Credits: 3
Instruction: 3 Periods & 1 Tut/Week
End. Exam: 3 Hours
Sessional Marks: 40
End-Exam-Marks: 60

Course Objectives:

- To impart knowledge in basic concepts of solving linear system of equations.
- To enable the students to study the eigen values and eigen vectors of matrix.
- To introduce the concepts of ordinary differential equations and their applications to engineers.
- To enable the students to solve any higher order differential equations and to solve differential equations related to simple electric circuits, Newton's law of cooling.
- To introduce the students to Laplace Transforms and their applications.

Course Outcomes:

<table>
<thead>
<tr>
<th>By the end of the course, student will be able to:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Solve linear system equations using matrix algebra techniques</td>
</tr>
<tr>
<td>2. Determine the Eigen values and vectors of a matrix</td>
</tr>
<tr>
<td>3. Apply different techniques in solving differential equations that model engineering problem</td>
</tr>
<tr>
<td>4. Use the application of Differential equations like simple electric circuits, Newton's law of cooling and to solve any higher order linear ordinary differential equation with constant coefficients</td>
</tr>
<tr>
<td>5. Solve linear differential equations and Network analysis using Laplace transforms.</td>
</tr>
</tbody>
</table>

SYLLABUS

UNIT I

Linear Algebra: 11 Periods

UNIT II

12 Periods
Linear transformations – Orthogonal transformations- Vectors (Linearly Independent & Dependent) ,Eigen values, Eigen Vectors, Properties of Eigen values – Cayley Hamilton theorem (without proof). Reduction to diagonal form – Reduction of Quadratic form to canonical form – Nature of quadratic form,

UNIT III

10 Periods

Dept. of Information Technology, ANITS (A)
Differential Equations of first order:

UNIT IV
10 Periods

Higher order Linear Differential Equations
Definitions – Rules for finding the complementary function, rules for finding the particular integral, method of variation of parameters, equations reducible to linear equations with constant coefficient - Cauchy’s homogeneous linear equation, Legendre’s linear equation.

UNIT V
17 Periods

Laplace Transforms:

TEXT BOOK:

REFERENCE BOOKS:
Course Objectives:

➢ To impart knowledge in basic concepts of physics relevant to engineering applications
➢ To introduce advances in technology for engineering applications

Course Outcomes:

By the end of the course, student will be able to:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Design and conduct simple experiments as well as analyse and interpret data in engineering applications</td>
</tr>
<tr>
<td>2.</td>
<td>understand advanced topics in engineering</td>
</tr>
<tr>
<td>3.</td>
<td>Identify formulae and solve engineering problems</td>
</tr>
<tr>
<td>4.</td>
<td>Apply quantum physics to electrical phenomena</td>
</tr>
</tbody>
</table>

SYLLABUS

UNIT I

Thermodynamics: Heat and work, first law of thermodynamics and its applications, reversible and irreversible processes, heat engine, Carnot cycle and its efficiency, Carnot’s theorem, second law of thermodynamics, entropy – entropy change in reversible and irreversible processes, entropy and second law, entropy and disorder, entropy and probability, third law of thermodynamics

UNIT II

Electromagnetism: Faraday’s law of induction, Lenz’s law, Integral and differential forms of Faraday’s law, self-inductance, energy stored in electric and magnetic fields, Poynting vector, displacement current, Maxwell’s equations in integral form (no derivation), wave equation, propagation of electromagnetic waves in free space

Ultrasound: Properties of ultrasonic waves, production of ultrasonic waves by magnetostriction and piezoelectric methods, applications of ultrasonics

UNIT III

Optics

Interference: Introduction, principle of superposition, coherence, Young’s double slit experiment, conditions for interference, interference in thin films by reflection, wedge shaped film and Newton’s rings

Diffraction: Introduction, Fresnel and Fraunhofer diffraction, diffraction at a single slit
Polarisation: Introduction, types of polarized light, double refraction in uniaxial crystals, Nicol’s prism, quarter and half-wave plate, production and detection of plane, circular and elliptically polarized light

UNIT IV

Lasers: Introduction, characteristics of a laser beam, spontaneous and stimulated emission of radiation, population inversion, Ruby laser, He-Ne laser, semiconductor laser, applications of lasers

Fibre optics: Introduction to optical fibers, principle of propagation of light in optical fibers, acceptance angle and acceptance cone, numerical aperture, types of optical fibers, modes of propagation and refractive index profiles, attenuation in optical fibers, advantages of optical fibers in communications, fiber optics communication system, applications of optical fibers, fiber optic sensors

UNIT V

Quantum Mechanics:
Planck’s hypothesis, wave-particle duality, introduction to quantum theory, de-Broglie concept of matter waves, Heisenberg’s uncertainty principle, Schrodinger’s time independent and time dependent wave equations, physical significance and properties of the wave function ψ, application of Schrodinger wave equation for a particle in one dimensional well – eigenwavefunctions and energy eigen values of the particle

Elements of Statistical Mechanics: Elementary concepts of Maxwell-Boltzman, Bose-Einstein and Fermi-Dirac statistics (no derivation)

TEXT BOOKS:

3. Resnick & Halliday *Physics* - Volume II

REFERENCE BOOKS:

1) V. Rajendran *Engineering physics* McGrawHill Education Private Ltd
2) S.O. Pilai, Sivakami *Engineering Physics* New Age International Publishers
3) Young & Freedman *University Physics* Pearson Education
4) A. Marikani *Engineering Physics* PHI Learning Private Limited
ENVIRONMENTAL SCIENCES
(Common for all branches)

IT123 Credits: 3
Instruction: 3 Periods & 1 Tut/Week
End Exam: 3 Hours
Sessional Marks: 40
End-Exam-Marks: 60

Course Objectives:
- To gain knowledge on the importance of environment and ecosystems.
- To acquire knowledge with respect to biodiversity, its threats and its conservation and appreciate the concept of interdependence.
- To acquire knowledge about environmental pollution-sources, effects and control measures of environmental pollution.
- To understand the treatment of wastewater and solid waste management.
- To be aware of the national and international concern for environment for protecting the environment.

Course Outcomes:
By the end of the course, student will be able to:

1. Understand the natural environment and its relationships with human activities.
2. Characterize and analyze human impacts on the environment.
3. Integrate facts, concepts, and methods from multiple disciplines and apply to environmental problems.
4. Design and evaluate strategies, technologies, and methods for sustainable management of environmental systems and for the remediation or restoration of degraded environments.

SYLLABUS

UNIT I
INTRODUCTION TO ENVIRONMENT AND NATURAL RESOURCES 10 Periods
Introduction: Definition, Multidisciplinary nature, Scope and Importance of Environmental Sciences- R & D in environment, green advocacy, green marketing, green media and environment consultancy. Need for public awareness.
Natural Resources: Forest resources-use and overexploitation, deforestation, Big Dams effects on forests and tribal people. Water resources-sources, use and over utilization of surface and ground water, conflicts over water, dams-benefits and problems. Food resources-environmental impact of modern agriculture-fertilizer and pesticides. Land resources-land degradation- landslides, soil erosion and desertification. Energy resources- renewable and non-renewable energy resources and use of alternate-energy sources.

UNIT II 10 Periods
ECOSYSTEM & BIO DIVERSITY
Ecosystem: Concept of an ecosystem-structure and function of an ecosystem Food chains, food webs and ecological pyramids, Energy flow in an ecosystem, Ecosystem regulation, Ecological succession. Types, characteristic features, structure and function of forest, grass
land, desert and aquatic ecosystems.
Biodiversity-definition, types, India as a Mega diversity Nation, Values of biodiversity, Hot spots of biodiversity, Threats to biodiversity-habitat loss, poaching, human-wildlife conflicts, Endangered and endemic species, Conservation of biodiversity.

UNIT III
ENVIRONMENTAL POLLUTION AND WASTE MANAGEMENT 10 Periods
Sources, effects and control measures of Air pollution, Noise Pollution, Soil Pollution, Marine pollution, Thermal pollution, Radio Active Pollution. Water Pollution (Sources, Effects, Control measures, DO, BOD, COD, sewage treatment), Green house effect, Ozone depletion, Acid rain—causes and adverse effects. Solid waste management: Sources and effects of municipal waste, bio-medical waste, Industrial waste, e-waste, Process of waste management-composting, sanitary landfills, incineration.

UNIT IV
SOCIAL ISSUES AND ENVIRONMENT 8 Periods

UNIT V
LEGISLATIONS, CONVENTIONS & CASE STUDIES 10 Periods

TEXT BOOK:

REFERENCE BOOKS:
2. G. S. Sodhi *Fundamental concepts of Environmental Chemistry*, Narosa publishing house, New Delhi
Course Objectives:

- To increase ability to communicate with people and learn to sketch and take field dimensions.
- To make the student familiar to the drawing practices and convection
- To familiarize the student about various engineering curves used in industry
- To enable the student draft simple engineering components and analyze different views of components.
- To introduce basic Auto CAD skills.

Course Outcomes:

<table>
<thead>
<tr>
<th>By the end of the course, student will be able to:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Perform basic sketching techniques will improve.</td>
<td></td>
</tr>
<tr>
<td>2. Draw orthographic projections and sections</td>
<td></td>
</tr>
<tr>
<td>3. Use architectural and engineering scales will increase.</td>
<td></td>
</tr>
<tr>
<td>4. Produce engineering drawing will improve.</td>
<td></td>
</tr>
<tr>
<td>5. Convert sketches to engineered drawing will increase.</td>
<td></td>
</tr>
<tr>
<td>6. Develop good communication skills and team work.</td>
<td></td>
</tr>
<tr>
<td>7. Become familiar with Auto CAD two dimensional drawings.</td>
<td></td>
</tr>
</tbody>
</table>

SYLLABUS

UNIT I

UNIT II
Orthographic projections – projections of points – projections of straight lines

UNIT III
Projections of planes – perpendicular planes – oblique planes

UNIT IV
Projection of solids – Prisms – Cylinder– Pyramids & cones

UNIT V
Isometric projections – Plane solids, Combination of solids
Demonstration & Practice: Computer aided drafting of lines, planes solids and Dimensioning.

Dept. of Information Technology, ANITS (A)
TEXT BOOK:

REFERENCE BOOKS:
1. K. L. Narayana& P. Kanniah *Engineering Drawing*
2. R. B. Choudary *Engineering Graphics with Auto CAD*
3. TrymbakaMurty *Computer Aided Engineering Drawing*
ELEMENTS OF ELECTRICAL ENGINEERING
(for IT & CSE branches)

IT125
Instruction: 3 Periods & 1Tut/week
End Exam: 3Hrs

Credits :3
Sessional Marks:40
End Exam Marks: 60

Course objectives:
- Analysis of circuits by using KCL and KVL
- Finding equivalent circuits by using circuit theorems
- Analysis of magnetic circuits
- Principle of operation and behavior of electrical machines

Course outcomes:
By the end of the course, the student will be able to:

1.	Calculate voltage across, current through and power supplied / absorbed by an electrical element.
2.	Obtain the performance characteristics of D.C. Machines.
3.	Obtain the voltage regulation characteristics of a Transformer.
4.	Obtain the performance characteristics of Induction Motor.

SYLLABUS

UNIT I
Electric Circuits : Circuit Elements, Basic Law’s, KVL, KCL, Linearity Principle (Super Position), Mesh and Nodal analysis, Thevenin’s and Norton’s theorems.

UNIT II

UNIT III

UNIT IV
D.C. Motors : principle, working of D.C. Motors, significance of back E.M.F., Torque equation of D.C. Motors, Types of D.C. Motors, Special Motors (Stepper Motor and Servo Motor) and Applications.

UNIT V

TEXT BOOKS:

REFERENCE BOOK:

Dept. of Information Technology, ANITS (A)
ENGINEERING PHYSICS LAB
(Common for all branches)

IT126
Practical / week = 3
Exam=3 Hrs

Credits: 2
Sessional Marks: 50
Exam. Marks: 50

Course Objectives:
➢ To enable the students to acquire skill, technique and utilization of the Instruments

Course Outcomes:

<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Design and conduct experiments as well as to analyze and interpret data.</td>
</tr>
<tr>
<td>2.</td>
<td>Identify, solve and apply fundamental physics principles</td>
</tr>
</tbody>
</table>

List of experiments (any eight to ten experiments are to be completed)

1. Determination of coefficient of thermal conductivity of a bad conductor- Lee’s method.
2. Determination of radius of curvature of a convex lens - Newton’s rings.
4. Determination of Cauchy’s constants of the material of the prism using spectrometer.
5. Determination of thickness of a thin paper by forming parallel interference fringes-Wedge method.
6. Study of variation of magnetic field along the axis of a current carrying circular coil – Stewart and Gee’s apparatus
7. Calibration of a low-range voltmeter using potentiometer.
8. Verification of laws of resistance and determination of specific resistance of wire by using Carey- Foster’s bridge.
9. Determination of refractive indices o-ray and e-ray in quartz crystal (double refraction)
10. Determination of the frequency of an electrically maintained tuning fork - Melde’s experiment.
11. Determination of Rydberg constant using hydrogen discharge tube.
12. Characteristics of photo cell and determination of Planck’s constant –Photoelectric effect.
13. Determination of e/m of an electron by Thomson’s method

TEXT BOOK:
1. Physics Laboratory Manual prepared by Department of Physics ANITS

REFERENCE BOOKS:
2. A.R Vegi *Comprehensive practical Physics* Vegi Publishers Pvt.Ltd.
Course Objectives:

- To expose the students to a variety of self-instructional, learner-friendly modes of language learning.
- To facilitate computer-aided multi-media instruction enabling individualized and independent language learning.
- To improve the fluency in spoken English and neutralize mother tongue influence.
- To bring about a consistent accent and intelligibility in their pronunciation of English by providing an opportunity for practice in speaking.
- To initiate them into greater use of the computer in resume preparation, report writing, format-making etc.
- To help the students cultivate the habit of reading passages from the computer monitor, thus providing them with the required facility to face computer-based competitive exams such GRE, TOEFL, GMAT etc.

Course Outcomes:

By the end of the course, student will be able to:

1. **Handle CBT (Computer Based Tests) of the qualifying examinations.**
2. Receive, interpret, remember and evaluate information by practicing effective listening skills.
3. Speak English with neutralized accent.
4. Narrate, describe and report incidents and situations using appropriate terminology.

SYLLABUS

I CALL (Computer Aided Language Learning)
1. Introduction to the Sounds of English - Vowels, Diphthongs & Consonants.
2. Introduction to Stress and Intonation.
3. Short and long Reading comprehension exercises (listening skills)
4. Telephoning Skills.

II CSL (Communication Skills Lab)
5. ‘Just A Minute’ Sessions (JAM).
6. Describing Objects / Situations / People.
7. Video talks
8. Situational Dialogues / Role Play.
Suggested Software

- Cambridge Advanced Learners’ English Dictionary with CD.
- English Phonetics and Phonology – 2 CDs set
- English Mastery – Alania ABC
- Telephoning English
- Cambridge Grammar of English (Ronald Carter and Michael McCarthy) CD
- English Grammar in Use - Cambridge University Press
- Communication Skills – Oxford U P (Sanjay Kumar and PushpaLatha)

REFERENCE BOOKS:
Books Suggested for English Language Lab Library (to be located within the lab in addition to the CDs of the text book which are loaded on the systems)

1. *Spoken English (CIEFL)* in 3 volumes with 6 cassettes, OUP.
4. Dr A Ramakrishna Rao, Dr G Natanam& Prof SA Sankaranarayanan*English Language Communication : A Reader cum Lab Manual*Anuradha Publications, Chennai
5. Krishna Mohan & NP Singh *Speaking English Effectively* (Macmillan)
8. *English Skills for Technical Students*, WBSCTE with British Council, OL
9. J.K. Gangal *A Practical Course in Effective English Speaking Skills* PHI.
OBJETC ORIENTED PROGRAMMING WITH C++LAB
(Common for all branches except Chemical & Civil Engineering)

IT 128
Practicals/week = 3 Periods & 1 Tut/Week
Exam=3 Hrs
Credits :3
Sessional Marks :50
Exam. Marks :50

Course Objective:

➢ To introduce Object Oriented Programming (OOP) using the C++ Language.
➢ To provide the basic concepts and techniques which form the Object Oriented Programming paradigm.

Course Outcomes:

By the end of the course, student will be able to:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Understand how to use the programming constructs of CPP.</td>
</tr>
<tr>
<td>2.</td>
<td>Use Object Oriented Programming concepts to develop object oriented programs.</td>
</tr>
<tr>
<td>3.</td>
<td>Apply various object oriented features to solve real world computing problems using C++ language.</td>
</tr>
</tbody>
</table>

SYLLABUS: List of the experiments to be done on the following topics

1. Overview (Transition from C)
2. OOP Concepts and Characteristics,
3. Preprocessor, Command line arguments
4. Classes & Data Abstraction,
5. Objects,
6. Operator Overloading,
7. Inheritance,
8. Virtual Functions & Polymorphism,
9. I/O Streams,
10. Templates,
11. File Processing,
12. Exception Handling Concepts

REFERENCE BOOKS:

1. Mahesh Bhave, Sunil patekar Object Oriented Programming in C++ Second edition, Pearson
3. Herbert Schildt C++ the Complete Reference III edition, TMH 1999

LIST OF SAMPLE PROGRAMS
1. Write a C++ program that uses a recursive function for solving Towers of Hanoi problem.

2. Write a C++ program to find both the largest and smallest number in a list of integers.

3. Write a C++ program that uses function templates to solve problems 1 and 2 experiments

4. Write a C++ program to implement the matrix ADT using a class. Use operator overloading for implementation

5. Write the definition for a class called Rectangle that has floating point data members length and width. The class has the following member functions:
 - void setlength(float) to set the length data member
 - void setwidth(float) to set the width data member
 - float perimeter() to calculate and return the perimeter of the rectangle
 - float area() to calculate and return the area of the rectangle
 - void show() to display the length and width of the rectangle
 - int sameArea(Rectangle) that has one parameter of type Rectangle. sameArea returns 1 if the two Rectangles have the same area, and returns 0 if they don't.

 1. Write the definitions for each of the above member functions.
 2. Write main function to create two rectangle objects. Set the length and width of the first rectangle to 5 and 2.5. Set the length and width of the second rectangle to 5 and 18.9. Display each rectangle and its area and perimeter.
 3. Check whether the two Rectangles have the same area and print a message indicating the result. Set the length and width of the first rectangle to 15 and 6.3. Display each Rectangle and its area and perimeter again. Again, check whether the two Rectangles have the same area and print a message indicating the result.

6. Create a class called MusicIns to contain three methods string(), wind() and perc(). Each of these methods should initialize string array to contain the following
 - i. Veena, guitear, sitar, sarod and mandolin under string
 - ii. Flute, clarinet, saxophone, nadaswaram and piccolo under wind
 - iii. Table, mridangam, bangos, drums and tambour under perc

 It should also display the contents of the arrays initialized, create a sub class call TypesIns to contain a method called get() and show(). The get() methods must display a menu as follows
 - o String instruments
 - o Wind instruments
 - o Percussion instruments

 The show method should display the relevant details according to user choice. the base class variable must be accessible only to its derived classes.

7. Create a base class called shape. It should contain two methods getCoord(), showCoord() to accept x and y coordinates and to display the same respectively.
Create a sub class called Rect. It should contain method to display length and breadth of the rectangle called showCoord() . In main method, execute the showCoord() of Rect class by applying the dynamic method dispatch concept

8. Create a class called car. Initialize the color and body attributes to “blue” and “wagon”. there should be two constructors one is a default the creates blue wagon the other constructor should take two argcolor, body and initialize. write method toString() that returns the color and body. Create a sub class funcar. In sub class there are two constructors to invoke super class constructors resp. Write a method playCD in sub class that displays the message “Beautiful music fills the passenger compartment” execute the methods to show the messages
 1. Mycar is a blue wagon
 2. My father’s car is red convertible.

9. Create the ZooAnimal constructor function. The function has 4 parameters -- a character string followed by three integer parameters. In the constructor function dynamically allocate the name field (20 characters), copy the character string parameter into the name field, and then assign the three integer parameters to cageNumber, weightDate, and weight respectively.

10. Write a C++ program to perform operations on complex numbers using operator overloading

11. Write a C++ program to write number 1 to 100 in a data file NOTES.TXT

12. Write a function in C++ to count and display the number of lines not starting with alphabet 'A' present in a text file "STORY.TXT".

 Example:
 If the file "STORY.TXT" contains the following lines,
 The rose is red.
 A girl is playing there.
 There is a playground.
 An aeroplane is in the sky.
 Numbers are not allowed in the password.

 The function should display the output as 3
Course Objective:

➢ To provide training and hands on experience to the students on basic Engineering related skills like carpentry, fitting, house wiring and tin smithy.

Course Outcomes:

By the end of the course, student will be able to:

<table>
<thead>
<tr>
<th>No.</th>
<th>Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Make simple carpentry and fitting works</td>
</tr>
<tr>
<td>2.</td>
<td>Understand and do different types of wiring for practical requirements</td>
</tr>
<tr>
<td>3.</td>
<td>Develop cross-sections of models for tin smithy and make them.</td>
</tr>
<tr>
<td>4.</td>
<td>It also helps in understanding of relevant skills required by the engineer working in engineering industries and workshops.</td>
</tr>
</tbody>
</table>

LIST OF EXPERIMENTS

Minimum of three exercises has to be conducted from each trade.

Trade:

Carpentry
1. Cross Lap Joint
2. Dovetail Joint
3. Mortise and Tennon Joint
4. Briddle Joint

Fitting
1. V Fit
2. Square Fit
3. Half Round Fit
4. Dovetail Fit

House Wiring
1. Parallel / Series Connection of three bulbs
2. Stair Case wiring
3. Florescent Lamp Fitting
4. Measurement of Earth Resistance

Tin Smithy
1. Taper Tray
2. Square Box without lid
3. Elbow
4. Funnel

Dept. of Information Technology, ANITS (A)